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Abstract

Model-theoretic semantics is inappropriate for adaptive systems work-

ing with insu�cient knowledge and resources. An experience-grounded

semantics is introduced in this paper, using NARS, an intelligent rea-

soning system, as a concrete example. In NARS, the truth value of a

sentence indicates the amount of available evidence, and the meaning

of a term indicates its experienced relationship with other terms. Ac-

cordingly, both truth value and meaning are dynamic and subjective.

This approach provides new ideas to the solution of some important

problems in arti�cial intelligence.

1 Introduction

Semantics studies how the items in a language are related to the environment

in which the language is used. Concretely, semantics is the theory of meaning

and truth. To ask questions like \What is the meaning of a term?" and \What

is the truth value of a sentence?", what we are looking for are the principles

that determining meaning and truth in general, rather than the meaning of a

speci�c word or the truth of a speci�c sentence.

A computerized reasoning system often uses an arti�cial language to com-

municate with its environment, which may be a human user or another com-

puter system. The syntax of the language is usually accurately regulated by a

formal grammar. The system carries out inferences in the language according

to some formal inference rules. For such a system, we need a semantics for two

major reasons. When designing the system, we need to choose inference rules

to get desired conclusions; when communicating with the system, we need to

understand the system's language.
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From the point of view of arti�cial intelligence, beside the general problems

in semantics, we are also interested in how intelligence is related to semantics,

that is, is there a fundamental di�erence in the semantics of intelligent systems

and that of unintelligent systems?

In this paper, we discuss the semantics of intelligent reasoning systems, and

use Non-Axiomatic Reasoning System (NARS) as a concrete example. We

argue that traditional semantical theories, typically model-theoretic theory,

cannot be applied to a system like NARS, because of the assumptions under

which the system is designed. A new approach, experience-grounded semantics,

is introduced, which can satisfy the requirements of NARS, and also has many

interesting properties.

2 Model-Theoretic Semantics

Model-theoretic semantics, with its variations, is the dominant paradigm for

semantics of formal language.

Formal languages was developed in the study of the foundation of mathe-

matics by Leibniz, Frege, Russell, Hilbert, and so on. A basic motive behind

formal language is to get ride of the uncertainties in natural language to get

an objective and accurate arti�cial language. Model-theoretic semantics was

founded by Tarski's work. Although Tarski's primary target formal language,

he also hoped that the ideas could be applied to reform everyday language

[17]. This approach is accepted by the \logical approach" to AI [11].

For a language L, de�ned by a �nite formal grammar, a model M consists

of a description of the relevant part of a domain, in another language ML, and

an interpretation I, which maps the items in L into the items in ML.

Given the above components, the meaning of a term in L is de�ned as

its image in M under I, and whether a sentence in L is true is determined

by whether it is mapped by I into a \state of a�airs" in M. For a reasoning

system, valid inference rules are those that only derive true conclusions from

true premises.

According to this opinion, as Tarski said [17], \semantics is a discipline

which deals with certain relations between expressions of a language and the

objects `referred to' by those expressions."

Let us see what is implied by the above de�nitions. According to model-

theoretic semantics, for any formal language, the su�cient and necessary con-

dition for its terms to have meaning and for its sentences to have truth value

is the existence of a model. In di�erent models, meaning and truth value in

the language may change, however, these changes cannot be caused by using

the language. A reasoning system R that represents all its knowledge in L
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has nothing to do with the semantics of L. That means, on one hand, R has

no access to the meaning of terms and truth value of sentences | it can only

distinguish terms by their forms, and derive sentences from other sentences

according to its inference rules, but put no constraint on how the language can

be interpreted. On the other hand, what R does to the terms and sentences

in L has no in
uence to their meaning and truth value. When working within

such a system, as Russell said, \we never know what we are talking about, nor

whether what we are saying is true," [15] unless R can set up models by itself.

In that case, however, it no longer works in L only, and its models still cannot

exclude other possible models.

These properties are good for mathematics and meta-mathematics, where

abstract patterns of ideal inference are studied, and the patterns can be applied

to di�erent domains by constructing di�erent models. The study of semantics

contributes remarkably to the development of mathematics. As Tarski said,

\As regards the applicability of semantics to mathematical science and their

methodology, i.e., to meta-mathematics, we are in a much more favorable

position than in the case of empirical sciences." [17]

However, the attempt to apply this idea to the semantic study of natural

language is not successful [12]. It seems that natural language is too subtle

and 
uid to be put into the frame of model-theoretic semantics. Also, it hardly

works for non-deductive inferences [2, 10], though there are various attempts

to extend the theory into more 
exible variations by introducing ideas like

possible world and multi-valued logic [3, 4, 8, 23].

The problems in model-theoretic semantics are often used as arguments

against \strong AI". Actually, Searle's assertion that \computers are syntac-

tic, but the human mind is semantic" in his \Chinese room" argument [16]

is directly based on the assumption that all computerized symbol manipula-

tions are bounded to model-theoretic semantics, so uninterpreted symbols are

meaningless.

Model-theoretic semantics has been criticized by many authors for its rigid-

ness [2, 10]. However, without a powerful competitor, the solution is far from

clear. As McDermott said: \The notation we use must be understandable to

those using it and reading it; so it must have a semantics; so it must have a

Tarskian semantics, because there is no other candidate." [10] Some people

believe that it is the idea of \formalizing language and inference rules" that

should be abandoned. They try some other ideas, such as neural network

and robots, with the hope that they can generate meaning and truth from

perception and action [2, 5].

What is the fundamental di�erence between natural and arti�cial (formal)

languages? Why the latter must be rigid, constant, determined, and clear-

cut? It is especially important for arti�cial intelligence, because here we want
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a computer system to use a natural language directly, or to use an arti�cial

language in a more 
uid and 
exible way.

Some people may suggest that the reasoning system itself (human or com-

puter), rather than the world it deals with, should be used as the model of the

language the system uses. We can simply say that the meaning of a term is

a \concept" the system has, and the truth value of a sentence is the system's

\degree of belief". This idea sounds reasonable, but it does not answer the

original question: how is the \concept" and \degree of belief" related to the

outside world? Without an answer to that question, such a solution \simply

pushes the problem of external signi�cance from expressions to ideas." [1]

In this paper, we show another possibility: to abandon model-theoretic

semantics, and to �nd another semantics for an intelligent reasoning system,

which still use a formal language and formal inference rules.

3 Model vs. Experience

By claiming the existence of a modelM, it is assumed that there is a consistent,

complete, and static description of (the relevant part of) the environment in

a language ML, at least in principle, and that such a description, as \state of

a�airs", is at least partially known, so that the truth value of some sentences

in L can be determined accordingly. These sentences then can be used as

premises for all the inferences. To insist the soundness of the inference rules,

it is implied that only true conclusions (no matter how expensive they are) are

desired.

When can we accept these assumptions? It is only when a system has

su�cient knowledge and resources with respect to the problems to be solved.

Su�cient knowledge means that the desired results can be got by inference

from available knowledge alone, so no new knowledge is necessary; su�cient

resources means that the system can a�ord the time-space expense of the

inference, so no approximation is necessary. These are exactly the assumptions

we accept when working within an axiomatic system. Therefore it is not a

surprise that model-theoretic semantics works �ne there.

Now let us see the opposite situation: a system works with insu�cient

knowledge and resources. It means that the system must have the following

properties:

Finite. The system has a constant information processing capacity. As a

result, it cannot be assumed that all requirements for processor time

and storage space can be satis�ed.

Real-time. All tasks have time requirements attached. As a result, it cannot
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be assumed that the system can spend as much time as it wants on a

problem. It cannot be assumed, neither, that new problems only show

up when the system is idle.

Open. No constraints are put on the knowledge and tasks that the system

need to process, as long as they are representable in the formal language.

As a result, it cannot be assumed that new knowledge will always be

consistent with old knowledge. It cannot be assumed, neither, that all

desired results are deductively implied by current knowledge.

It is easy to see that the human mind usually works in such an environment,

but few current computer system can. In [22], it is argued that \working with

insu�cient knowledge and resources" is a de�nitive property of intelligence.

Model-theoretic semantics cannot be applied in such a situation. If we

still de�ne truth as \agreement with reality", so cannot be challenged by new

knowledge, then no sentence can get a truth value under the above assump-

tions. On the other hand, the system cannot reorganize its knowledge by

generating new concepts | it cannot be con�rmed that these new concept

really correspond to objects that \exist in the domain."

However, it does not follow that in such an environment semantic notions

like \truth" and \meaning" are meaningless | if that is the case, then we

cannot �nd truth and meaning beyond mathematics. It only means that we

need a di�erent semantics.

Semantics studies how the items in a language are related to the environ-

ment in which the language is used. With insu�cient knowledge and resources,

the language L used by a system R is related to the environment of the sys-

tem, not by a model, but by the experience the system, which is the knowledge

and tasks provided by the environment to the system during their interaction.

To simplify our discussion, in the following we only study a system whose

experience can be completely recorded as a stream of sentences in L.

In such a situation, the basic semantic notions like \meaning" and \truth"

still make sense. The system may treat terms and sentences in L di�erently,

not according to their syntax (shape), but according to their relations to the

environment.

To a human designer or user, the semantic study is necessary because we

want to make the system adaptive, that is, to behave according to its experi-

ence. For this purpose, the system need to judge the truth value of sentences

according to whether, or how much, they are supported by its experience,

and to distinguish the meaning of terms according to their positions in its

experience.

Therefore, for an adaptive system working with insu�cient knowledge and
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resources, a model-theoretic semantics is no longer applicable. What we need

is an experience-ground semantics.

As descriptions of an environment, what is the di�erence between a \model"

and a record of \experience"? At least there are the following:

� A model is a complete description of an environment, but a record of

experience is only a partial description of it.

� A model must be consistent, but pieces of knowledge in experience may

con
ict with one another.

� A model is static, but experience extends in time.

� A model of L is represented in another language ML, and it is not neces-

sarily accessible to the system that use L, but experience is represented

in L itself, and it is accessible to the system.

4 The Semantics of NARS

In the following, we take Non-Axiomatic Reasoning System (NARS) [19, 21, 22]

as an example, to show how to apply experience-ground semantics to a formal

language used by a computerized reasoning system.

As a general-purpose intelligent reasoning system, NARS is designed to be

adaptive with insu�cient knowledge and resources [22]. As discussed above,

in such a system the truth value of a sentence is determined by its relationship

with the experience of the system, rather than with \state of a�airs" in a

model.

Obviously, NARS should not (and cannot) use \true" and \false" as the

only truth values of sentences. To be adaptive, it is necessary to measure the

amount of experience that support or against a sentence. To do it, we need

to determine what is positive evidence that supports the sentence and what

is negative evidence that refutes the sentence, then to measure their amount

with a certain unit. In this way, a truth value is simply a numerical summary

of relevant evidence.

However, as mentioned previously, in NARS \evidence" is represented in

L, too. Therefore, the truth value of a sentence in L is de�ned by a set of

sentences, also in L, with their own truth values | it seems to be a circular

de�nition or in�nite regression.

The solution used in NARS is \bootstrapping" | taking a subset of L to

de�ne the truth value of sentences and meaning of terms in L. In the following,

we only discuss the core language of NARS, de�ned in [19], and ignore its

extensions.

6



NARS uses a term-oriented language, in which each sentence consists of a

subject term and a predicate term, related by a copula.

Let us �rst de�ne a copula for an ideal inheritance relation. The copula

is written as \<", and the relation is de�ned to be a re
exive and transitive

binary relation between two terms. Intuitively, \<" correspond to the subset

relation in set theory, and \to be" in English, in a highly idealized form. If

\S < P" is true, it means that there is no, and will no, negative evidence for

the sentence in the system's experience.

According to the assumption of insu�cient knowledge, this type of sentence

cannot appear as knowledge in NARS. Actually, the sentences appear in the

knowledge base of NARS have the form \S � P", where \�" is a copula that

is re
exive and transitive to a certain degree. Therefore, \<" is the limit case

of \�", when the uncertainty in the latter completely disappears.

Now we can de�ne evidence for a \�" relation by two \<" relations.

A piece of positive evidence (with a unit weight) of \S � P" is a term M

such that \M < S" and \M < P", or \P <M" and \S <M".

A piece of negative evidence (with a unit weight) of \S � P" is a term M

such that \M < S" but \M <= P", or \P < M" but \S <= M".

The intuition behind above de�nition is clear: for positive evidence, the

proposed transitivity holds when M is checked as an instance of the relation;

for negative evidence, the proposed transitivity fails when M is checked as an

instance of the relation.

Given the number of positive instances w

+

(call it the weight of positive

evidence) and the number of all checked instances w (call it the weight of

available evidence), the truth value of \S � P" can be naturally represented

by a pair of real numbers <f; c>, where f = w

+

=w, and c = w=(w + 1) [19].

Here f is the frequency, or proportion, of positive evidence among all evidence,

and c is called con�dence, indicating the amount of relevant evidence that the

system has collected. (See [19] for a detailed discussion about con�dence.)

Especially, \S < P" is identical to \S � P < 1; 1>", that is, \<" is the

limit of \�" when both w and w

+

go to in�nite, while w�w

+

(the amount of

negative evidence) has an upper bound.

Let us de�ne L

0

as a language in which each sentence has the form \x < y",

where x and y are di�erent terms. Assuming that the experience of the system

(until a certain instant) is represented by K, a �nite set of sentences in L

0

,

then it is easy to generate the re
exive and transitive closure K

�

(see [19]).

Based on K

�

, we de�ne an extension and an intension for each term in K

�

:

The extension of a term T is a set of terms E

T

= fx j x < T 2 K

�

g.

The intension of a term T is a set of terms I

T

= fx jT < x 2 K

�

g.
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The meaning a term is determined by its extension and intension, that

is, its relations with other terms, according to the system's experience. Such

a de�nition matches our intuition: the meaning of a word is revealed by its

instances and properties, both represented by other terms.

As discussed previously, for any sentence \S � P" in L, its truth value can

be derived from the weights of evidence w

+

and w

�

, which can be got from

the extensions and intensions of the two terms:

w

+

= jE

S

\ E

P

j+ jI

P

\ I

S

j;

w

�

= jE

S

� E

P

j+ jI

P

� I

S

j;

w = w

+

+ w

�

= jE

S

j+ jI

P

j:

Now we have �nished our basic task. We de�ne the truth value of sentences

and meaning of terms in L by the system's experience, which is represented in

L

0

, a subset of L. Because the meaning of \<" is completely determined by its

two properties, re
exivity and transitivity, the relation is used as a semantic

primitive to de�ne other notions.

According to the assumption of insu�cient knowledge, in NARS the con-

�dence of a sentence cannot reach 1 (which means the system has in�nite evi-

dence about the sentence), but can approach it as a limit. Therefore, sentences

like \S < P" cannot really appears in the system's experience. However, it

does not prevent us from using them to construct an \ideal experience" for

semantic purposes. For example, if there is a sentence within the system's

knowledge base with the form \S � P < 0:75; 0:80 >", then from the rela-

tionship between truth value and weight of evidence, we get w = 4; w

+

= 3.

Therefore, the system believes the relation \S � P" to such an extent, as it

has tested the relation four times (by checking common extension or intension

of the two terms), and the relation is con�rmed three times, but fails once.

By saying so, it does not mean that the system actually got the truth value

by carrying out the testings | this \ideal evidence" cannot be got practically.

The system may have checked the relation for more than four times, or the

conclusion was derived from other knowledge or even directly provided by the

environment. No matter how the truth value <0:75; 0:80> is practically gen-

erated (there are in�nite possibilities to get it), it can always be understood

in a unique way, as stated above. The \ideal experience" is used here as an

\ideal meterstick" to measure degree of truth [7].

Another factor that makes actual experience di�erent from ideal experience

is the insu�ciency of resources. Due to the lack of space, some knowledge in the

experience is forgot by the system; due to the lack of time, some knowledge

in the experience is ignored by the system. Consequently, the truth value

of a sentence or the explicit meaning of a term (i.e., its revealed relations
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with other terms) is usually based on partial experience of the system. As

discussed above, this factor makes the real situation much more complex than

the ideal situation, but it does not prevent us from saying that the truth value

of a sentence indicates its summarized evidence, and the meaning of a term

indicates its experienced relations with other terms.

5 Truth value in NARS

Now let us discuss the properties and implications of the new semantics.

One important character of the theory is its dynamic and subjective na-

ture. Obviously, the truth values of a sentence changes dynamically in NARS,

due to the coming of new experience. The system's inference activity also

change truth value of sentences by combining evidence from di�erent sections

of the experience. Since truth values are based on the system's experience,

they are intrinsically subjective. Accurately speaking, the knowledge in the

system is not a description of the world, but a summary of the experience,

so it is the system's point of view of its environment. It is highly possible

that systems in the same environment have di�erent knowledge, due to their

di�erent individual experience.

To say that truth values are dynamic and subjective, it does not mean

that they are arbitrary. As Quine said about the human mind, \Observations

are the boundary conditions of a system of beliefs." [14] The systems in the

same environment can achieve certain \objectivity" by communicating to one

another to share experience. However, here \objective" means \common" or

\unbiased", rather than \observer-independent."

Such a semantics provides a justi�cation for non-deductive inferences. As

revealed by Hume's \induction problem", our predication about future expe-

rience cannot be infallible [6]. From limited past experience, we cannot get

general descriptions of \state of a�airs", neither can we know how far our

current knowledge is from such an \objective" descriptions. Based on this,

Popper made the well-known conclusion that an inductive logic is impossi-

ble [13]. However, from the previous discussion, we can see that what really

pointed out by Hume and Popper is the impossibility of an inductive logic with

a model-theoretic semantics.

Let us see how induction is justi�ed in NARS by considering the following

ideal experience: the system gets the knowledge that \swan � bird <1; 1>"

(\Swans are birds.") and \swan � white-thing < 1; 1 >" (\Swans are

white."). According to previous discussions, here we �nd a common instance of

\bird" and \white-thing", which can be generalized as \bird � white-thing <

1; 1=2>" (\Birds are white."), that is, the inductive conclusion is supported
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by positive evidence with unit weight. The frequency of the conclusion, 1,

means that all evidence summarized by this sentence are positive; the con�-

dence, 1/2, indicates the amount of evidence collected. They do not measure

how many birds \in the world" are white. If in another section of experience

the system knows that crows are birds but they are not white, it similarly gets

an inductive conclusion, \bird � white-thing < 0; 1=2>," from that piece of

evidence alone. When these two con
icting conclusions meet, the evidence are

combined by the system's revision rule, and the system get a summarized con-

clusion \bird � white-thing <1=2; 2=3>", where the frequency is a weighted

sum of the competing two, and the con�dence is higher than the premises',

due to the accumulation of evidence.

Though the above examples are insu�cient to uniquely determine the in-

duction rule and the revision rule in NARS (the general situation is discussed

in [19]), they do provide boundary conditions that the rules should satisfy.

Similar analysis can be done to other non-deductive inferences, such as ab-

duction and analogy. In this way, the validity of the inference rules in NARS

are justi�ed. These rules are not truth-preserving in the traditional sense: the

conclusions may con
ict with new evidence; however, they are truth-preserving

according to the new de�nition of truth value, because the truth value of the

conclusion is determined by the experience summarized in the premises.

Another result of such an experience-based de�nition of truth value is that

it provides a uni�ed representation for the various types of uncertainty. As

discussed in [20], in a sentence \S � P ," randomness usually happens when

the extension of the subject term S is partially included in the extension of the

predicate term P (some, but not all, instances of S are P ), and fuzziness usually

happens when the intension of the predicate term P is partially included in the

intension of the subset term S (S has some, but not all, properties of P ). On

the other hand, ignorance, revealed by the phenomenon that judgments have

di�erent sensibility to new evidence, can be measured by \lack of con�dence"

in NARS, so become a function of available evidence [19]. Although these types

of uncertainty have di�erent origin, in NARS they are all represented by the

truth value of sentences, and processed in a uni�ed manner. Moreover, de�ning

a truth value by a set of binary relations in a section of \ideal experience", we

can explain a multi-valued statement about randomness, fuzziness, ignorance,

or their mixture, by translating it into a set of two-valued statements. This is

exactly what measure theory asks us to do [7].

6 Meaning in NARS

Like truth values, the meaning of terms in NARS is also dynamic and subjec-

tive. The meaning of a term is determined by its experienced relations with
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other terms, and it determines how the term will be used by the system in

future. An human observer can still interpret the terms appearing in NARS

freely by identifying them with words in a natural language or human concepts,

but that is their meaning to the interpreter, and has nothing to do with the

system itself. For example, if the term \bird" never appears in the system's

experience, it is meaningless to the system (though meaningful to English

speakers). However, when a sentence \bird � animal < 1; 0:8>" appears in

the system's input stream, the term \bird" begins to have meaning to the sys-

tem, revealed by its inheritance relation with \animal". As the system know

more about \bird", its meaning becomes richer and more complex. The term

\bird" may never means the same to NARS as it means to a human (because

we cannot expect a computer system to have human experience [22]), but we

cannot say \bird" is meaningless to the system for this (human chauvinistic)

reason.

This leads us to Searle's \Chinese room" argument [16] and Harnad's \sym-

bol grounding" problem [5]. As mentioned previously, Searle's argument is

based on the assumption that a symbol can only get meaning from a model. If

we accept an experience-grounded semantics, it is no longer the case. As long

as a term has experienced relations with other terms, it become meaningful

to the system, no matter how poor its meaning is. An adaptive system never

process a term only according to its shape without considering its position in

the system's experience. The shape of a term may be more or less arbitrary,

but not is its experienced relations with other terms.

By saying so, we do not mean that a word in a natural language get its

meaning only by its relation with other words in the language, because human

experience does not consist of words only. However, the general principle is still

applicable here, that is, a word gets its meaning by its experienced relations

with the system's other components, which may be words, perceptive images,

motor sequences, and so on. In a system like this, the meaning of a word is

much more complex than in a system whose experience consists of symbols

only, but it does not rule out the latter case as a possible way for symbols to

be meaningful.

The feeling of meaningless in Searle's \Chinese room" comes from his delib-

erate isolation of his experience in Chinese from his sensory-motor experience

and his experience summarized in his native language. If we put an intelli-

gent computer system into the same situation, there are two possible cases. If

the computer system already has profound sensory-motor experience and/or

a \native language", it may also judge the Chinese characters as meaning-

less, because it cannot relate them to its previous experience. However, if

the system enters the room with no previous experience, Chinese will become

its native language. The system gets the meaning of the characters by how
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they are related to one another, and it will not attempt to ground them on

some more fundamental stu�, or complain about the \meaningless squiggles

and squoggles" when it fails in doing so. If the system also has sensory-motor

ability, and communicate with other similar computer systems in Chinese, we

may �nd that the meaning of Chinese words, to them, become as rich and

complex as to human Chinese speakers, though it is fairly possible that they

may have di�erent opinions about what is the \correct" meaning of a word.

If experience-grounded semantics is applied to a symbolic system, all the

symbols that the system have are already grounded | in the system's experi-

ence, of course. The crucial point here is that for a symbol to be meaningful

(or grounded), it must be related somehow to the environment. However, such

a relation is not necessarily by sensory-motor mechanism. The experience of

a system can be symbolic, as in the case of NARS. This type of experience

is much simpler and \coarse-grained" than sensory-motor experience, but it

is real experience, so can ground the symbols appear in it, just as words in

natural language are grounded in human experience.

This idea sounds like what Harnad calls \dictionary-go-round" | he hopes

that meaning of symbols can \be grounded in something other than just

more meaningless symbols." [5] Here we should notice a subtle di�erence:

in experience-grounded semantics, the meaning of a term is not reduced into

the meaning of other terms (that will lead to circular de�nition in a �nite

language), but de�ned by its relations with other terms. These relations are

formed during the interaction between a system and its environment, and is

not arbitrary at all. On the other hand, extending the system's experience

to include sensory-motor activities does not fundamentally change the situa-

tion. Sensory-motor primitives are still components of a system's experience,

rather than components of the \outside world". The meaning they have (to

the system) comes from their internal relationship, too.

Human beings judge the truth value of a sentence according to personal

experience and determine the meaning of a word according to its relations with

other words. This is not a new idea to psychologists and linguistics [9, 12, 18].

However, few people tried to apply it to an arti�cial language de�ned by a

formal grammar. This is caused by several assumptions, which, though seldom

mentioned, are accepted by many people.

It is implicitly assumed that the semantics of a \formal language" has to

be model-theoretic. Such an inductive conclusion is valid according to our

experience | almost all formal language in history get their meaning and

truth values in that way. As a result, people who does not like the semantics

usually abandon the language at the same time. Actually, a language can be

\formal" in two di�erent senses. In a week sense, it means that the language

is arti�cial, and formed according to a formal grammar; in a strong sense, it
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means that the language is also used with a model-theoretic semantics. The

language used in NARS is \formal" in the week sense only.

Logicians, in distinguishing themselves from other people, such as psychol-

ogists, tend to stress the normative nature of logical theory. As a result, in

the study of semantics, the goal is often set as to look for the real, objective

meaning of terms or truth value of sentences. Even if we can still justify such

an opinion when the object is to study the \logic in mathematics," we cannot

do it when we study the \logic in empirical science and common sense."

7 Conclusion

As discussed above, there are two di�erent ways to relate the items of a lan-

guage to the world: by the interpreting them in a model or by locating them

in the experience of a system.

Model-theoretic semantics is good for axiomatic systems. However, it is

not appropriate for adaptive systems working with insu�cient knowledge and

resources. What makes model-theoretic semantics inapplicable is not the lan-

guage, but the condition under which the language is used.

Experience-grounded semantics takes the truth value of a sentence as a

summary of relevant evidence, and takes the meaning of a term as its expe-

rienced relations with other terms. Many important and interesting results

follow from this theory. With such a semantics, a \formal" language can also

be vague and ambiguous, as well as creative and 
exible, as a natural language.

A predictable suggestion to this new theory is that it is better to leave

\truth value" and \meaning" with their model-theoretic usages, and to re-

place them with names like \degree of belief" and \association" in the new

theory. Such a name substitution does not change the contents of the new

theory, and it can prevent certain misunderstanding. However, unless we all

agree that \truth value" and \meaning" can only be used in mathematics, the

proposed substitution is not very attractive, because many problems about

these semantic notions can be reconsidered in the light of the new theory.

The semantic theory introduced in this paper can be extended into more

complex systems. The term-oriented language de�ned previously can be ex-

tended to including other inheritance relations and compound terms [21]. In

a system with sensory-motor capacity, truth value and meaning are no longer

only determined within the language, but also determined by the \non-verbal"

components in the experience. In a system that can generate new terms by

itself, these terms will correspond to the stable patterns appearing in the sys-

tem's experience, rather than to the objects existing in the outside world.

Undoubtly, this paper only addresses the basic principles of experience-
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grounded semantics, and leave many issues untouched. Even so, we can say,

from our previous work, that this approach is promising.
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